Navigation

  • index
  • modules |
  • modules |
  • next |
  • previous |
  • CMPy 1.0 documentation »

Information TheoryΒΆ

Information theory is the quantitative study of information. Information is generally knowledge of the outcome of an event, and thus probability distributions take a central role in information theory.

  • Defining a Probability Distribution
    • Standard Distributions
    • Log Distributions
    • Symbolic Distributions
    • Generalized Distributions
  • Working With Distributions
    • Normalizing & Validating
    • Converting Between Distribution Types
    • Marginalizing
    • Conditioning
  • Measuring Information
    • Entropy
    • Perplexity
    • Conditional Entropy
    • Cross Entropy
    • Relative Entropy
    • Mutual Information
    • Conditional Mutual Information
    • Multivariate Mutual Information
    • Interaction Information
    • Total Correlation
    • Binding Information
    • In Summary

Previous topic

bayesianmc – Markov Chain Inference

Next topic

Defining a Probability Distribution

This Page

  • Show Source

Quick search

Enter search terms or a module, class or function name.

Navigation

  • index
  • modules |
  • modules |
  • next |
  • previous |
  • CMPy 1.0 documentation »
© Copyright 2010, Computational Mechanics Group. Last updated on Oct 26, 2015. Created using Sphinx 1.3.1.